Matrix-Based Kernel Subspace Methods
نویسنده
چکیده
It is a common practice that a matrix, the de facto image representation, is first converted into a vector before fed into subspace analysis or kernel method; however, the conversion ruins the spatial structure of the pixels that defines the image. In this paper, we propose two kernel subspace methods that are directly based on the matrix representation, namely matrix-based kernel principal component analysis (matrix KPCA) and matrix-based kernel linear discriminant component analysis (matrix KLDA). We show that, through an extended Gram matrix, the two proposed matrix-based kernel subspace methods generalize their vector-based counterparts and contain richer information. Our experiments also confirm the advantages of the matrix-based kernel subspace methods over the vector-based ones.
منابع مشابه
Cancer molecular pattern discovery by subspace consensus kernel classification.
Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملLarge-scale Kernel-based Feature Extraction via Budgeted Nonlinear Subspace Tracking
Kernel-based methods enjoy powerful generalization capabilities in handling a variety of learning tasks. When such methods are provided with sufficient training data, broadly-applicable classes of nonlinear functions can be approximated with desired accuracy. Nevertheless, inherent to the nonparametric nature of kernel-based estimators are computational and memory requirements that become prohi...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005